16 research outputs found

    Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions

    Full text link
    Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating accurate genome assemblies. The tools used for nanopore sequence analysis are of critical importance as they should overcome the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for nanopore sequence analysis to understand their advantages, disadvantages, and performance bottlenecks. It is important to understand where the current tools do not perform well to develop better tools. To this end, we 1) analyze the multiple steps and the associated tools in the genome assembly pipeline using nanopore sequence data, and 2) provide guidelines for determining the appropriate tools for each step. We analyze various combinations of different tools and expose the tradeoffs between accuracy, performance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners in making conscious and effective choices for each step of the genome assembly pipeline using nanopore sequence data. Also, with the help of bottlenecks we have found, developers can improve the current tools or build new ones that are both accurate and fast, in order to overcome the high error rates of the nanopore sequencing technology.Comment: To appear in Briefings in Bioinformatics (BIB), 201

    GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of Basecalling and Read Mapping

    Full text link
    Nanopore sequencing is a widely-used high-throughput genome sequencing technology that can sequence long fragments of a genome into raw electrical signals at low cost. Nanopore sequencing requires two computationally-costly processing steps for accurate downstream genome analysis. The first step, basecalling, translates the raw electrical signals into nucleotide bases (i.e., A, C, G, T). The second step, read mapping, finds the correct location of a read in a reference genome. In existing genome analysis pipelines, basecalling and read mapping are executed separately. We observe in this work that such separate execution of the two most time-consuming steps inherently leads to (1) significant data movement and (2) redundant computations on the data, slowing down the genome analysis pipeline. This paper proposes GenPIP, an in-memory genome analysis accelerator that tightly integrates basecalling and read mapping. GenPIP improves the performance of the genome analysis pipeline with two key mechanisms: (1) in-memory fine-grained collaborative execution of the major genome analysis steps in parallel; (2) a new technique for early-rejection of low-quality and unmapped reads to timely stop the execution of genome analysis for such reads, reducing inefficient computation. Our experiments show that, for the execution of the genome analysis pipeline, GenPIP provides 41.6X (8.4X) speedup and 32.8X (20.8X) energy savings with negligible accuracy loss compared to the state-of-the-art software genome analysis tools executed on a state-of-the-art CPU (GPU). Compared to a design that combines state-of-the-art in-memory basecalling and read mapping accelerators, GenPIP provides 1.39X speedup and 1.37X energy savings.Comment: 17 pages, 13 figure

    BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

    Full text link
    Generating the hash values of short subsequences, called seeds, enables quickly identifying similarities between genomic sequences by matching seeds with a single lookup of their hash values. However, these hash values can be used only for finding exact-matching seeds as the conventional hashing methods assign distinct hash values for different seeds, including highly similar seeds. Finding only exact-matching seeds causes either 1) increasing the use of the costly sequence alignment or 2) limited sensitivity. We introduce BLEND, the first efficient and accurate mechanism that can identify both exact-matching and highly similar seeds with a single lookup of their hash values, called fuzzy seeds matches. BLEND 1) utilizes a technique called SimHash, that can generate the same hash value for similar sets, and 2) provides the proper mechanisms for using seeds as sets with the SimHash technique to find fuzzy seed matches efficiently. We show the benefits of BLEND when used in read overlapping and read mapping. For read overlapping, BLEND is faster by 2.6x-63.5x (on average 19.5x), has a lower memory footprint by 0.9x-9.7x (on average 3.6x), and finds higher quality overlaps leading to accurate de novo assemblies than the state-of-the-art tool, minimap2. For read mapping, BLEND is faster by 0.7x-3.7x (on average 1.7x) than minimap2. Source code is available at https://github.com/CMU-SAFARI/BLEND

    ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-Efficient Genome Analysis

    Full text link
    Profile hidden Markov models (pHMMs) are widely employed in various bioinformatics applications to identify similarities between biological sequences, such as DNA or protein sequences. In pHMMs, sequences are represented as graph structures. These probabilities are subsequently used to compute the similarity score between a sequence and a pHMM graph. The Baum-Welch algorithm, a prevalent and highly accurate method, utilizes these probabilities to optimize and compute similarity scores. However, the Baum-Welch algorithm is computationally intensive, and existing solutions offer either software-only or hardware-only approaches with fixed pHMM designs. We identify an urgent need for a flexible, high-performance, and energy-efficient HW/SW co-design to address the major inefficiencies in the Baum-Welch algorithm for pHMMs. We introduce ApHMM, the first flexible acceleration framework designed to significantly reduce both computational and energy overheads associated with the Baum-Welch algorithm for pHMMs. ApHMM tackles the major inefficiencies in the Baum-Welch algorithm by 1) designing flexible hardware to accommodate various pHMM designs, 2) exploiting predictable data dependency patterns through on-chip memory with memoization techniques, 3) rapidly filtering out negligible computations using a hardware-based filter, and 4) minimizing redundant computations. ApHMM achieves substantial speedups of 15.55x - 260.03x, 1.83x - 5.34x, and 27.97x when compared to CPU, GPU, and FPGA implementations of the Baum-Welch algorithm, respectively. ApHMM outperforms state-of-the-art CPU implementations in three key bioinformatics applications: 1) error correction, 2) protein family search, and 3) multiple sequence alignment, by 1.29x - 59.94x, 1.03x - 1.75x, and 1.03x - 1.95x, respectively, while improving their energy efficiency by 64.24x - 115.46x, 1.75x, 1.96x.Comment: Accepted to ACM TAC

    Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions

    No full text
    Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating accurate genome assemblies. The tools used for nanopore sequence analysis are of critical importance, as they should overcome the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for nanopore sequence analysis to understand their advantages, disadvantages and performance bottlenecks. It is important to understand where the current tools do not perform well to develop better tools. To this end, we (1) analyze the multiple steps and the associated tools in the genome assembly pipeline using nanopore sequence data, and (2) provide guidelines for determining the appropriate tools for each step. Based on our analyses, we make four key observations: (1) the choice of the tool for basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology. (2) Read-to-read overlap finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap has a lower memory usage, and it is faster than GraphMap. (3) There is a trade-off between accuracy and performance when deciding on the appropriate tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick initial assembly, and further polishing can be applied on top of it to increase the accuracy, which leads to faster overall assembly. (4) The state-of-the-art polishing tool, Racon, generates high-quality consensus sequences while providing a significant speedup over another polishing tool, Nanopolish. We analyze various combinations of different tools and expose the trade-offs between accuracy, performance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners in making conscious and effective choices for each step of the genome assembly pipeline using nanopore sequence data. Also, with the help of bottlenecks we have found, developers can improve the current tools or build new ones that are both accurate and fast, to overcome the high error rates of the nanopore sequencing technology.ISSN:1467-5463ISSN:1477-405
    corecore